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APPLICATIONS

This textbook on Calculus is part of a three-volume series, also includ-
ing books on Finite Mathematics and Algebra and Geometry, for courses
that represent the culmination of a high school mathematics program.

LEM SOLVING

| |

,‘

Most students need the motivation of realistic applications to learn
calculus. We have selected a diverse range of applications from the
physical, social, and engineering sciences, as well as from mathematics
itself. Included are the following:

® We show how derivatives occur as the slope of a tangent, the
velocity of a car, the linear density of a wire, the rate of growth of an
animal or bacteria population, the rate of change of temperature, the
rate of flow of water, the rate of spread of an epidemic, the rate of
reaction in chemistry, and the marginal cost and marginal profit in
€conomics.

@ We show how to minimize the cost of laying cable across a river,
the cost of fencing a field, and the average cost of producing a com-
modity. We show how to maximize revenue or profit if cost and demand
functions are known.

@ We explain the radiocarbon dating of ancient objects.

® We show how Newton’s Law of Cooling can be used to find the
temperature of a 900°C rod of steel after it has been cooled by forced
air.

@ We solve a differential equation to find the number of fish in a lake
at a given time.

NAPIT A QTS
\ DY A & \
JVIPHASIES

Our educational philosophy has been strongly influenced by the books
of George Polya and the lectures of both Polya and Gabor Szego at
Stanford University. They consistently introduced a topic by relating
it to something concrete or familiar. In this spirit, we have tried to
motivate new topics by relating mathematical concepts to the students’
experiences.

The influence of Polya’s work on problem solving can be seen
throughout the book. The Review and Preview to Chapter 3 gives an
introduction to some of the problem-solving strategies that he has explained

Xi



at grezter length in his books How to Solve It, Mathematical Discovery,
and Mathematics and Plausible Reasoning. When these strategies occur
in examples, we highlight their use with margin captions.

In addition to the graded exercise sets, we have included special
problems, called PROBLEMS PLUS, that require a higher level of
problem-solving skill.

F' T1€TID A ' TTNY /A QY 71D €
ILLUSTRATIONS/ANSWERS

We have included an unusually large amount of art in order to convey
the notion of change that is basic to calculus. The answer section alone
contains 384 diagrams, many of them answers to the curve-sketching
questions. All answers are given at the end of the text. Complete
solutions to every question are available in the Solutions Manual.

FOUNDERS OF CALCULUS

We have included biographies of five mathematicians who played a
major role in the invention and advancement of calculus: Sir Isaac
Newton, Gottfried Leibniz, Pierre Fermat, the Bernoulli family, and
Leonhard Euler. We believe that an account of the historical devel-
opment of calculus helps to make the subject come alive.
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colleagues for their valuable advice, the editorial and production staff
at McGraw-Hill Ryerson for a superb job, and those close to us who
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project.

James Stewart
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2 CHAPTER I LIMITS AND RATES OF CHANGE

REVIEW AND PREVIEW TO

Q nt o
Sotution

Example 2
I

Solution

Example 3

Solution

‘ YT 1
CHAPIER 1

Factoring

Factor x2 — 3x — 18.

The two integers that add to give —3 and multiply to give — 18 are
—6 and 3. Therefore

X =3x—18=@x—6)(x + 3) )

Some special polynomials can be factored using the following formulas.

a> — b= (a — b)a + b) (difference of squares)
a* — b = (a — b)a* + ab + b? (difference of cubes)
a + b = (a + b)a*> — ab + b?) (sum of cubes)

Factor. (a) x*+ 27 (b) 2x* — 18x?
(a) Using the formula for a sum of cubes with ¢ = x and b = 3, we
have
XB+27T=xX+3PF=x+3)x*—-—3x+9)
(b) 2x* — 18x2 = 2x2%(x2 — 9) (common factor) e
= 2x%x — 3)(x + 3) (difference of squares) (-0

The Factor Theorem

A polynomial P(x) has x — b as a factor if and only if
P(b) = 0.

Factor P(x) = 2x* — 5x> — 4x + 3.

P(1) = 2(1 = 5(1 —4(1) +3 = -4 +0
P(—1)=2(—=1P =5(-1)—=-4-1)+3=0
Therefore, by the Factor Theorem, x + 1 is a factor. We find another
factor by long division:



REVIEW AND PREVIEW TO CHAPTER | 3

232 —Tx + 3
X+ D2x3 —5x2 —4x + 3
2x3 + 247
— Tx? — 4x
— T2 — Ix
3x + 3 3
3x + 3 (@J

Thus we have

Px) = 2x3 — 5x2 —4x + 3
=+ D2x> - Tx + 3)
= x4+ D2x — DH(x — 3)

When factoring expressions that involve fractional or negative expo-
nents, we use the Laws of Exponents.

= , 3 1 1
[oxample 4 Factor 2x2 + 4x2 — 6x 2.

N|—

Solution  The term with the smallest exponent is —6)\'7% and we use 2x 2 as a
common factor.
26 4 4xt — 67T = 27 + 2 - 3) .
= 27 2x — 1)(x + 3) &
EXERCISE 1
1. Factor.
(a x> —x—2 (b) x> — 9x + 14
() x>+ Tx + 12 d 222 —x — 1
(e) 5x* + 13x + 6 (f) 6y> — 1ly + 3
(g) 4+ 22 = 3t (h) 3x* + 78 + 242
2. Factor.
(a) 4x*> — 25 (b)) x* —1
(c) £+ 64 @ ¥y -9y
(e) 8c* — 27d3 (f) x0+ 8
(g) x* — 16 (h) »8 —1
3. Factor.
(@ x* — x> — l6x + 16 b) ¥ —=—Tx+ 6
() ¥+ 5x —2x — 24 (d x4+ 2x> — 1lx — 12
() 4x3 + 12x> + 5x — 6 ) x* — 33 — T2+ 27x — 18
4. Factor.
(a) ,\‘% — x% (b) x + 5 + 627!
(©) F + 247 — 817 @) 26 — 247
© 1+ 2x"' + x=2 ) @+ DI+3+ )72
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Do not expand

the denominator.

Fvarmnmnle
gxampie

Solution

Dationalizinag
Rationalizing
natonaizing

To rationalize a numerator or denominator that contains an expression
such as

Va - Vb

we multiply both the numerator and the denominator by the conjugate
radical

Va + Vb

Then we can take advantage of the formula for a difference of squares:

(Va = VB(Va + Vb) = (Vay = (VB = a — b

Rationalize the numerator in the expression

Vx+4-2
=
We multiply the numerator and the denominator by the conjugate radical
Vi+d+ 2

\/m—2:<\/m—2>(m+z>
x Vx+4+2

X
. x+4H -4
x(Vx + 4+ 2)

X
= +0
xrtary ¢F0
1
TVxt 442 @
EXERCISE 2
1. Rationalize the numerator.
1
Vx -3 e i ]
() - (b) Vx
0 FE
*Vx —8 V2+h+V2—nh
© — =7 @ h
€ VX2 +3x+4—x ) V2 +x—VaZ—x
2. Rationalize the denominator.

1

4
@ AFi-1 RV = RV

2

B,

@ Vx+1-Vx—1

X
© EFT+ax
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1.1 LINEAR FUNCTIONS AND THE TANGENT PROBLEM 5

LINEAR FUNC1T

g

In this first chapter, we show how the idea of a limit arises when we
try to find a tangent to a curve. After developing the properties of limits
of functions, we use them to compute tangents, velocities, and other
rates of change. Then we investigate another type of limit, the limit of
a sequence, and show how it is used to find the sum of an infinite
series.

IONS AND THE TANGENT PROBLEM

A linear function is a function f of the form

f(x) = mx + b, m and b constants

It is called linear because its graph has the equation y = mx + b,
which we recognize as the equation of a line with slope m and
y-intercept b.
Recall that the slope of a nonvertical line that passes through the
points Pi(x,,y,) and Py(x,, y,) is defined by
Ay _y —

m=-—=
Ax  x — x|

Since the slope is the ratio of the change in y to the change in x, it can
be interpreted as the rate of change of y with respect to x.

y Py(x2,¥2)

A)I = ))2 — ))l

Pl(v\‘l,)’l),r e

Ax = X —x‘l

\4

The following figure shows several lines labelled with their slopes.
Notice that lines with positive slope slant upward to the right, whereas
lines with negative slope slant downward to the right. Notice also that
the steepest lines are the ones where the absolute value of the slope is
the largest, and a horizontal line has slope zero. The slope of a vertical
line is not defined.
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Example 1

Solution

m=125

Y

Find a linear function whose graph passes through the points
(—1,—1)and (2,9).

The slope of the graph is

We find the equation of the line using the point-slope form.
y =y = mlx — x))
y—5=2x-2)

or y=2x+1

The function is given by
fix) = 2x + 1

The fact that the rate of change of y with respect to x is 2 means that
y increases twice as fast as x.

)}




Example 3

Solution

1.1 LINEAR FUNCTIONS AND THE TANGENT PROBLEM 7

A linear function is given by y = 6 — 5Sx. If x increases by 2, how
does y change?

The rate of change is

2 — slope = —3
AX—SOPG—

and we are given that Ax = 2. Thus

Ay = (=5Ax = (=35(2) = —10

N

and so y decreases by 10. QY

The word tangent comes from the Latin word fangens, which means
touching. For a simple curve, such as a circle, a tangent is a line that
intersects the circle once and only once. But for more complicated
curves this definition is not good enough. The figure below shows a
point P on a curve C and two lines [ and ¢ passing through P. The line
[ intersects C only once, but it does not look like a tangent. On the
other hand, the line # looks like a tangent but it intersects C twice.

We look at the problem of ﬁﬁding a tangént line to a specific curve,
y = x2, in the following example.

Find the equation of a tangent line to the parabola y = x? at the point
P(1,1).

We will be able to find the equation of the tangent line ¢ as soon as
we know its slope m. The difficulty is that we know only one point,
P, on t, whereas we need two points to compute the slope. But we can
compute an approximation to m by choosing a nearby point Q(x,y) on
the parabola (as in the diagram) and computing the slope mpg of the
line PQ, which is called a secant line.
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A L
y / /»
/ /"l
/
O(x,y) /,
2 //
- — X y
p /P(1, 1)
] .
0 7,«":/,! X

We choose x # 1 so that Q # P. Then

y—1
IﬂpQ:
x—1

But since Q lies on the parabola we have y = x?, so

X =1

x —1

’"PQ =

For instance, for the point Q(1.1, 1.21) we have

121 —1  0.21 31
’n — fm — o
B o1 —1 0.1

The following tables give the values of mp, for several values of x close

to 1.
Approaching 1 From the Right Approaching 1 From the Left

x>1 mpy ¥ <1 Hipg
2 3 0 1
1.5 2.5 0.5 1.5
1.1 2.1 0.9 1.9
1.01 2.01 0.99 1.99
1.001 2.001 ) ) 0.999 1.999

The closer Q is to P, the closer x is to 1, and, it appears, the closer
Mpg 1S to 2.

This suggests that the slope of the tangent line ¢ should be m = 2.
We say that the slope of the tangent line is the limit of the slopes of
the secant lines, and we express this symbolically by writing

lim mpy = m
o—p 1

and
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Since the tangent line passes through P(1, 1) and has slope 2, we
use the point-slope form of the equation of a line to write the equation
of the tangent as

y—1=2x—-1) or y=2x—1 \«

Example 3 shows that in order to solve tangent problems we must
be able to find limits. After studying methods for computing limits in
the next two sections we will return to the problem of finding tangent
lines to general curves in Section 1.4.

State the slopes of the given linear functions.

(a) y = 4x ®b) y=3x—-5
() fx) =4 -2 d) fix) =2 — 3x
(e) fx) =31 —x) f) x+2y =3

Find an equation of the line that passes through the points (—3, 5)
and (4, —95).

Find a linear function whose graph passes through the points
(—4, —2) and (2, 10).

A linear function is given by y = 16 + 3x. How does y change

(a) if x increases by 4? (b) if x decreases by 2?
A linear function is given by y = % How does y change
(a) if x increases by 6? (b) if x decreases by 47

A car travels at a constant speed and covers 140 km in 4 h. If s
represents distance travelled (in kilometres) and ¢ represents time
elapsed (in hours), express s as a function of ¢ and draw its graph.
What does the slope of the line represent?
The point P(1,3) lies on the curve y = 2x + x2.
(a) If Q is the point (x, 2x+x?), find the slope of the secant line PQ
for the following values of x:
i 2 @) 1.5 @Gi) 1.1 (iv) 1.0l (v) 1.001
(vi) 0  (vii) 0.5 (viii)) 0.9 (ix) 0.99 (x) 0.999
(a) Using the results of part (a), guess the value of the slope of the
tangent line to the curve at P(1, 3).
(c) Using the slope from part (b), find the equation of the tangent
line to the curve at P(1, 3).
(d) Sketch the curve, two of the secant lines, and the tangent line.
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8. The point P(2,0) lies on the carve y = —x? + 6x — 8.

10.

C 11.

12.

(a)

(a)
(©

(d)
The

()

(b)

(©)

(d)
The

(a)

(b)
(©
(d

If O is the point (x, —x?>+ 6x —8), find the slope of the secant
line PQ for the following values of x:

i 3 () 2.5 i) 2.1 (@dv) 2.01

(v) 1 (vi) 1.5 (vii) 1.9 (viii) 1.99
Using the results of part (a), guess the value of the slope of the
tangent line to the curve at P(2,0).
Using the slope from part (b), find the equation of the tangent
line to the curve at P(2,0).
Sketch the curve, two of the secant lines, and the tangent line.

point P(1, %) lies on the curve y = %,\'3.

If Q is the point (x,1x*), find the slope of the secant line PQ for

the following values of x:

i 2 @i LS5 @iy 1.1 (@Gv) 1.01 (v) 1.001
(vi)0  (vi)) 0.5 (viii) 0.9 (ix) 0.99 (x) 0.999
Using the results of part (a), guess the value of the slope of the

tangent line to the curve at P(l,%).

Using the slope from part (b), find the equation of the tangent
line to the curve at P(l,%).

Sketch the curve, two of the secant lines, and the tangent line.

point P(0.5,2) lies on the curve y = 1,

X

If Q is the point (x,1), use your calculator to find approximate
values of the slope of the secant line PQ for the following
values of x:
@ 2 @Gy 1 di) 09 (iv)y 0.8 (v)y 0.7
(vi) 0.6 (vii) 0.55 (viii) 0.51 (ix) 0.45 (x) 0.49
Using the results of part (a), guess the value of the slope of the
tangent line to the curve at P(0.5,2).
Using the slope from part (b), find the equation of the tangent
line to the curve at P(0.5,2).
Sketch the curve, two of the secant lines, and the tangent line.

As dry air moves upward, it expands and in so doing cools at a rate
of about 1°C for each 100 m rise, up to about 12 km.

(a)

(b)
The

If the ground temperature is 20°C, find an expression for the
temperature T as a function of the height A.
Sketch the graph of T. What does the slope represent?

monthly cost of owning a car depends on the number of

kilometres driven. Judy Weyman found that in May it cost her $500
to drive 800 km and in June it cost her $650 to drive 1400 km.

()

Express the monthly cost C as a function of distance driven d,
assuming that a linear function is a suitable model.
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(b) Use this function to predict the cost of driving 2000 km per
month.

(c) What does the slope of the function represent?

(d) What is the monthly cost if she does not drive her car at all? Is
it reasonable?

(e) Why is a linear function a suitable model in this situation?

The open circle at

(3,3) indicates that

the function is not
defined when x = 3.

We saw in the first section how limits arise in trying to find a tangent
line to a curve. Later in this chapter we will see that limits also arise
in computing velocities and other rates of change. In fact, limits are
basic to all of calculus and so in this section we look at limits in general
and methods for calculating them.

We begin by investigating the behaviour of the function

x—3

f&) = X2 —4x + 3

when x is near 3. The following table gives values of f(x) for values
of x approaching 3 (but not equal to 3).

x<3 fx) £>3 Sflx)
2.5 0.666 667 3.5 0.400 000
2.9 0.526 316 3.1 0.476 190
2.99 0.502 513 3.01 0.497 512
2.999 0.500 250 3.001 0.499 750
2.9999 0.500 025 3.0001 0.499 975
A
y \
\

f(x) approaches 0.5 0.51

x approaches 3

/
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Q T -
Solution

From the table and the graph of f, we see that when x is close to 3
(on either side of 3), f(x) is close to 0.5. In fact, it appears that we
can make the values of f(x) as close as we like to 0.5 by taking x close
enough to 3. We express this by saying

x—3

“‘the limit of P —ar 13 as x approaches 3 is equal to 5

tE)

and by writing
x—=3 1

lim ————— =
=3 x2—dx +3 2

In general, we have the following definition of the limit of a function.

We write  lim f(x) = L
X—>a
and say
“‘the limit of f(x), as x approaches a, equals L’’

if we can make the values of f(x) arbitrarily close to L (as close
to L as we like) by taking x to be sufficiently close to a, but not
equal to a.

Roughly speaking, this says that the values of f(x) become closer
and closer to the number L as x gets closer and closer to the number
a (from either side of a) but x # a.

Notice the phrase ‘‘but x # «’’ in the definition of a limit. This
means that in finding the limit of f(x) as x approaches a, we need never
consider x = a. In fact, f(x) need not even be defined when x = a.
(The function f considered before the definition is not defined at
x = 3.) The only thing that matters is how f is defined near a.

Find 11m5 (? + 2x — 3).

It seems clear that when x is close to 5, x% is close to 25 and 2x is
close to 10. Thus it appears that

lim (* + 2x — 3) =25 + 10 — 3 = 32 ()\Q

In Example 1 we arrived at the answer by intuitive reasoning, but
it is also possible to find the limit using the following properties of
limits. These properties are proved in more advanced courses in calculus
using a precise definition of a limit. Notice that they apply only in
situations where the limits exist. See Example 8 and Question 12 in
Exercise 1.2 for examples in which limits do not exist.
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Properties of Limits
Suppose that the limits

lim f{x) and lim g(x)

both exist and let ¢ be a constant. Then
L. lim [f(x) + g(0)] = lim f(x) + lim g(x)

2. lim [f(v) — g()] = lim f() — lim g(x)
3. lim [cf()] = ¢ lim f(x)
4. lim [f0g()] = lim f(x) lim g(x)

im 22— 20 i () # 0
x—a g(x) lim g(,\') x—a
xXr—a

6. lim [f(x)]" = [hm f(,\')} if n is a positive integer
7. lim Vf(x) = VIim f(x) if the root on the right side

exists

These seven properties of limits can be stated verbally as follows.
The limit of a sum is the sum of the limits.
The limit of a difference is the difference of the limits.

3. The limit of a constant times a function is the constant times the
limit of the function.

4. The limit of a product is the product of the limits.

5. The limit of a quotient is the quotient of the limits (if the limit of
the denominator is not 0).

6. The limit of a power is the power of the limit.
7. The limit of a root is the root of the limit (if the root exists).

If we start with the basic limits
| lim x = a lim ¢ = ¢ (c is a constant) ’

then from Properties 6 and 7 we deduce the following:

X—a X—>a

lim x* = a" lim Vx = Va (if Va exists) ‘
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Using these limits, together with the seven properties of limits, we can
compute limits of more complicated functions. First we return to the
limit of Example 1.

Example 2 Find lim5 (x> + 2x — 3) using the properties of limits.
X—=
Solution

lilrg x4+ 2x—3) = lirrg x2+ lirrg 2x — 1irr% 3 (Properties 1 and 2)

X— X— =2 =
= lim x> + 2 lim x — lim 3 (Property 3)

x—5 x—5 x—5

=54+ 205 — 3
= 32 &

foxample 3 Evaluate using the properties of limits.
= 5x% + 1

li B b hm X2 + x
(a) .\'E;r} x+ 2 ( ) v
Solution ()
. _ 5.2
hm X4 - 5){2 + 1 \ll—l;nl (’\A SX + 1) (Pr it 5)
= ope
1 x+2 llrr} x+2) perty
lim x* — 5 lim x* + lim 1
_ e Rl I (Properties 2,
l.im] ¥+ hml 2 3,and 1)
=512 + 1
1+2
= —1

(b) 11m3 V2=V hm3 >+ x) (Property 7)
=V lin% x2 + llm3 x  (Property 1)

=

- V3 +3
=Vi2 . ,
=23 ®

Notice that if we let

xt = 5x% + 1
W=7
then
14— 5(12 + 1

1 +2
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and so we would have got the right answer in Example 3(a) by sub-
stituting 1 for x:

lim f(x) = f1)

Similarly, direct substitution provides the correct answer in Example
3(b):

If g(x) = Vx> + x, then hm3 gx) = g(3).

Functions with this property, that is,
lim f(x) = f(a)

are called continuous at a. The geometric properties of such functions
will be studied in the next section.

Using the properties of limits, it can be shown that many familiar
functions are continuous. Recall that a polynomial is a function of the
form

Px) =ax" + a,_x"'+ ... + ax + q

where aq, ay, ..., a, are constants. A rational function is a ratio of
polynomials.

(a) Any polynomial P is continuous at every number; that is,

lim P(x) = P(a)

. . P(x
(b) Any rational function f(x) = %, where P and Q are poly-
X
nomials, is continuous at every number a such that Q(a) # 0;
that is,
P(x) _ P(a)

R A

For instance, we could rework the solution to Example 2 as follows:

f(x) = x> + 2x — 3 is a polynomial, so it is continuous at 5
and therefore,

l_im5 W+ 2x—=3)=f5=5+25) —3 =32

Not all limits can be evaluated by direct substitution, however, as
the following examples illustrate.
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2
. , .o x> =16
xample 4  Evaluate lm} 1
r—4 x —

Solution Let

We cannot find the limit by substituting x = 4 because f(4) is not
defined (g is meaningless). Remember that the definition of lim f(x)
says that we consider values of x that are close to a but not equal to

a. Therefore in this example we have x # 4, so we can factor the
numerator as a difference of squares and write

. x> —16 k= Hx + 4

lim —— = lim ——

y—=4 x — 4 x—4 x— 4
= hrr}1 x+4
=44+ 4 .
-8 |9

\

\

Notice that in Example 4 we replaced the given rational function by
a continuous function [g(x) = x + 4] that is equal to f(x) for x # 4.
This is illustrated by the graph of f.

\

y]

st
y 2 — 16

4"/ = gl

: Y x — 4
,"//’
> 0 4 X
///
x3—38

Example 5 Find lim ———.
‘ =2 x2—3x + 2

Solution Notice that we cannot substitute x = 2 since we would obtain g. We

replace the given rational function by a rational function that is con-
tinuous at 2. To do this, we factor the numerator by using the formula
for a difference of cubes

@ — b= (a— b)a® + ab + b?)
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the denominator.
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with @ = x and b = 2. Then

; ¥ —8 . (= 2)(xr+ 2x + 4)
lim ——— = lim
=2 x2 —3x + 2  x>2 x—=2)(x =1
. X+ 2x+ 4
= lim ——
x—2 x—1
22+ 22) + 4
T -1 s
e |9 &
2+ h)? —
Find lim (h#
h—0 h

Again we cannot compute the limit by letting 4 = 0, so we first simplify
the numerator:

. 2+ hr—-4 . @+4ah+ K —4
lim ———— = lim
h—0 h h—0 h
4h + h?
= lim
h—0 h
= /%ER) @+ h "
Evaluate lirr%) Ll_l
x— X

Here the algebraic simplification consists of rationalizing the numerator,
that is, multiplying numerator and denominator by the conjugate radical

Vx+ 1+ 1:
I Vx+1-—-1 I (‘\/x + 1 - I)(\/x + 1+ 1)
im ———— = lim
Vx+1+1

x—0 X xr—0 X

. x+1 -1
= lim ——F——

—0x(Vx + 1+ 1)

= lim

X
=0 x(Vx +1+1)

I
= l.
e Y/ R

lim 1

x—0
~ VIim (x + 1) + lim 1
x—0 x—0
B 1
VO F 1+ 1
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Example 8

8  Show that lim 1 does not exist.

r—0 -

Solution  As x approaches 0 through positive values, 1 becomes very large. As

x approaches 0 through negative values, % becomes very large negative.
We see from the graph of y = % that the values of y do not approach

any number as x approaches 0. Therefore

lim 1 does not exist
x—0 v

y

A 1. Use the given graph of f to state the value of the limit, if it exists.

-
=
N

(D]

/
—_— N W
_—
N

[a)
[
)
o~
o
—

@ limfx) ) lim f&) () lim fO) () lim fx)

X



B

3.

State the value of each limit.

1 -3
(@ g

(©) Iim 3

x—>8

(e) lim x°

x—k

1.2 THE LIMIT OF A FUNCTION

(b)
(d)
(£

lim x

X—>T0

lim Vx

x—4

lim
x—0

Use the properties of limits to evaluate the following.

(@ lim 3x —7)

x—> |

(©) lim (& + x2 — 2x — 8)

x—2

Cox—1
© lin o

.t =3r+ 1
(g) lim e

@) lim Va7 +2¢ = 8

x5

Find the following limits.

x4 2
(a) ,\-Enjz ,:2 -4
X —2x — 3
() lim %7174%1—5
3
© lim
(@ lim

x—9 X — 3

Evaluate the following.

4 + hy — 64
(a) lim #
h—0 h
1 J—
) . 1 +nh
lim ——
h—0 h
. VO9+h-—-3
(e) ,lm}) B
i — 7

(b)
(d)

(f)
(h)

®

(b)
(d)

)

()

(b)

(d)

(f)

liml (2x* — 5x + 3)

X —

lim2 (2 + 5x + 3)°

x> —

I X+2x—3
im ———————
=4 ¥+ 2

lim Vu* + 2

— —4

lim (2 +
‘m< 41

1—3

6+r>

XX —=3x+2
lim ————
ey x—1

L 2P+ 5+ 2
lim

x—=-2 x> — 2x — 8

i
lim (2 + h? 4
h—0 ——]—1—-—“—

Find the following limits, if they exist.

(a) lim

=3 (x — 3)?
,\4 —
i
(©) lim ———
“.2 + x -
(© lim ¥~ 2

x>l xt — 2x + 1

(b)

(d)

)

x4+ 16x + 64
x + 8
x— 1

lHm
-1 x2—1

I —x-=-2
im ————
y—=-2x2 4+ 3x + 2

19
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10.

11.

12.

13.

PROBLEMS PLUS

\.—2 _ 3—2 L — 1
() lim ————— (h) lim Vx 2
x—4
=1 . x — 1
(i) lim ——> () lim =
=l X3 — 2 — 4x + 4 =1 Vx = x

(a) Use your calculator to evaluate f(x) = (1 + .\')-% correct to six
decimal places for x = 1, 0.1, 0.01, 0.001, 0.000 1, 0.000 01,
0.000 001, and 0.000 000 1.

(b) Estimate the value of the limit

. 1
‘lLr)r%) (1 + x)
to five decimal places.

X

(a) Use your calculator to evaluate g(x) =

correct to four

decimal places for x = 1, 0.1, 0.01, 0.001, 0.000 1.
(b) Estimate the value of the limit
2 — 1
im
h—0 h

to three decimal places.

Evaluate the following limits.

x—38 /6 — x —
(a) llrré 3\ (b) lim —6'\—2
x— \/X _—,) x—>2 \/m -1

If f(x) = 2x + 3, show that
|fx) — 7] <0.01 if |x— 2| < 0.005

2

X L.
How close to 1 do we have to take x so that 1 is within a

distance of 0.001 from 5?

. X .
Show that llr% u does not exist.
x—=0 X

Find functions f and g such that l_irr%) [f(x) + g(x)] exists but

1irr(1) Jf(x) and lm}) g(x) do not exist. [Hint: See Example 8.]

R . 6
. Hint: Introduce a new variable 1 = V/x.

1. Evaluate lim

x—1 \/,\—‘—1
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MATTC
LAMITS

The functions we have considered so far have been defined by simple

formulas, but there are many functions that cannot be described in this

way. Here are some examples: The population of Ottawa as a function

of time; the cost of a taxi ride as a function of distance; the cost of

mailing a first-class letter as a function of its mass. Such functions can

be given by different formulas in different parts of their domains.
Consider the function f described by

ifx=1

- — ’\’2
fw) = {3 —x ifx>1

Remember that a function is a rule. For this particular function the rule
is the following: First look at the value of x. If it happens that x < 1,
then the value of f(x) is x>. On the other hand, if x > 1, then the value
of f{x) is 3 — x. For instance, we compute f(0), f(1), and f(2) as
follows:

Since 0 = 1, we have f(0) = 0> = 0.
Since 1 = 1, we have f(1) = 12 = 1.
Since 2 > 1, we have f2) = 3 — 2 = 1.

We now investigate the limiting behaviour of f(x) as x approaches 1.

Approaching From the Left Approaching From the Right
x <1 flx) = x? x>1 fx) =3 —-x
0.9 0.81 1.1 1.9
0.99 0.980 1 1.01 1.99
0.999 0.998 001 1.001 1.999

We see from the tables that f(x) approaches 1 as x approaches 1 from
the left, but f(x) approaches 2 as x approaches 1 from the right. The
notation we use to indicate this is

,linll Jix) = 1 and ‘lir?+ Jx) =2

Notice that the ordinary two-sided limit lirr% J(x) does not exist because
X—=>

the function approaches different values from the left and right.

Further insight into this type of function is gained from its graph.
We observe that if x < 1, then f(x) = x?, so the part of the graph
of f that lies to the left of x = 1| must coincide with the graph of
the parabola y = x%. If x > 1, then f{x) = 3 — x, so the part of the
graph of f that lies to the right of x = 1 coincides with the graph of
y = 3 — x, which is a line with slope — 1. The solid circle indicates
that the point is included on the graph; the open circle indicates that
the point is excluded from the graph.
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y

Solution

y =V
t—

A
\ y
\ 24 Q
\
1 +
ol | T
In general, we write
lim_ f(x) = L
and say
“‘the left-hand limit of f(x), as x approaches a, equals L’’
or ““the limit of f(x) as x approaches a from the left equals L”’

if the values of f(x) can be made close to L by taking x close to a with
x<a.

Similarly, if we consider only x > a, we have the right-hand limit:
Jim, fo) = 1

If a function has different expressions to the left and right of the
number a, the following theorem provides a convenient way to test
whether or not lim f(x) exists.

xX—a

If lim_f(x) # lim_f(x), then lim f(x) does not exist.
If lim f(x) = L = lim_f(x), then lim f(x) = L.

When computing one-sided limits, we use the fact that the properties
of limits listed in Section 1.2 also hold for one-sided limits.

Find lim V.

Notice that the function f(x) = V/x is defined only for x = 0, so the
two-sided limit l_in}) V/x does not make sense. If we let x approach 0

while restricting x to be positive, we see that \/x approaches 0:

lim Vi =Vlim x=+v0=0

A

A
)
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Example 2 Show that lim |x| = 0.
x—0

Solution Recall that

A | .| _ { X lf,\‘ = 0

y T —x ifx<0
Therefore A]ir101+ |x| = 'lir})h x=0
and lim |x| = lim (=x) =0

x—0"

Since the left and right limits are equal, we have

lim |[x| =0
x—0

/,5 \
UI~)
V

[oxample 3 The Heaviside function H is defined by
_J0 ifr<0
H = {1 if1=0

It is named after the electrical engineer Oliver Heaviside (1850—-1925)
and can be used to describe an electric current that is switched on at
time + = 0. Evaluate, if possible,

(@ [tim HO (b) [t HO) () fim HO)
Solution (a) Since H(f) = 0 for r < 0, we have
i HO) = g 0 =0
(b) Since H(t) = 1 for t > 0, we have
1 Jig ) = i 1=

(c) We see that li%] H(®) + lir(r]l H(f) and so lirré H(t) does not
—0~ —0+ 1—

AN

of t exist. 9

If

—x—2 ifx<-—1
fr) =9 x if—1<x<l
=2 ifx=1

determine whether or not liml f(x) and lin} f(x) exist.
X = x>

Solution We first compute the one-sided limits. Since f(x) = —x — 2 for
x < —1, we have
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dim )= lim_ (~x =2 = —(-1) 2= —1

Since f(x) = x for —1 < x < I, we have

‘\__l)ir_nﬁ fix) = V\__l)irfn“ x = -1

The left and right limits are equal, so
.linjl fix)y = —1

Similarly, we have
_lirr117 S = _liII]l_ x =1

_liI‘I]l+ fx) = 'lirr|1+ (x2—=2x)=12-2(1) = —1

The left and right limits are different, so

liml J(x) does not exist
X—

This information is shown in the graph of f.

A
y /
14 r /
/
b P |

Jiscontinuities

We recall from Section 1.2 the definition of a continuous function.
]
fis continuous at a number a if

lim f() = fa)

Implicitly, this requires three things if f is continuous at a.
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1. f(a) is defined (so a is in the domain of f)
2. lim f(x) exists

3. lim /() = fla)

If f is not continuous at a, we say f is discontinuous at a, or f has
a discontinuity at a.

For instance, the Heaviside function in Example 3 has a discontinuity
at t+ = O because ’ler(l) H(t) does not exist. Notice that there is a break

in the graph of H at r = 0. This is typical of functions that have
discontinuities. In fact, you can think of a continuous function as a
function whose graph has no holes or breaks. You can draw its graph
without removing your pencil from the paper. Discontinuities occur
where there are breaks in the graph.

Where are the following functions discontinuous?
X2+ 1 ifx<o0

(a) fix) =140 ifx=0 (b) gk) = {
x> =1 ifx>0

x+1 ifx+#2
| ifx =2

(a) When x < 0, we have f(x) = x> + 1, and we know polynomials
are continuous. Similarly, f(x) = x> — 1 for x > 0. So f is
continuous when x # 0. The only possibility for a discontinuity
is x = 0, so we try to compute \h_r)ré f(x).

lim f) = lim G2+ 1) =0+ 1=1
lim, f) = lim, (= 1) =02~ 1 = ~1

Since the left and right limits are different, lina f(x) does not exist.
X2

Therefore f is discontinuous at 0. This can also be seen from the
break in the graph of f.

— ¢~
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(b) The only possibility for a discontinuity is x = 2. Since
g(x) = x + 1 for x # 2, we have

l_irr;g(x):l_irr%(,\‘+l):2+1=3

But, by definition, g2) =1
So llrr; g(x) # g(2)

Therefore g is discontinuous at 2.

lixample 6 The cost of a long-distance night-time phone call from Pine Bay to
Hester is 26¢ for the first minute and 22¢ for each additional minute
(or part of a minute). There is a minimum charge of 34¢ on all calls.
Draw the graph of the cost C (in dollars) of a phone call as a function
of the time ¢ (in minutes). Where are the discontinuities of this function?

Solution  From the given information, we have

C( = 0.34 ifo<r=<1
Ci) =026+ 022 =048 ifl<r=2
C(t) = 0.26 + 2(0.22) = 0.70if2 <t =<3
CH) = 0.26 + 3(0.22) = 0.92if3 <t<4

and so on.

0.5¢ 0
0.34¢

From the graph we see that there are discontinuities when t = 1, 2,
3, . ... For instance, the discontinuity at + = 2 occurs because

liril_ C(f) = 0.48 and lir?+ c@® = 0.70
= -
and so ’hrr% C(t) does not exist. WD

The function in Example 6 is called a step function because of the
appearance of its graph.
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A 1. Use the given graph of f to state the value of the limit, if it exists.

A
y
5 y = fo)——
1
2|0 i T

(@ im0 ) lm f&) () lim, fo (@ lim f)
e [Mm fo (¢ lim fx) (g lim fo @) lm f)

X

2. Use the given graph of g to state the value of the limit, if it exists.

y=28x) |/

— 1 2 *
[
[ 1

@ JHm, 80 @) tim_ et ) lim, g0 @ Mm, s

e MHm g0 () im, 80 (g lim 8 (n) \ILmI 8(x)

3. The graph of fis given. State whether f is continuous or
discontinuous at each of the following numbers.
(a) —2 (b) 0 (c) 2 (d) 4 (e) 6

4

Yy

y = flx)
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B

4,

Find the following limits, if they exist.

lim V/x lim Vx — 3
(a) 2, (b) A
lim VT = x lim VT = 2x
(C) x—1- (d) ,\~—>§
() Jlim |x—6] (¢ lim [x-6]
(g) Jim [x - o] @ i, L2
. =0t x
N Y NP
o g b 0 tin
Let
(=1 ifx<0
f) = {x +1 ifx=0

Find the following limits, if they exist. Then sketch the graph of f.
(@) [lim. S0 (b) Jim, fx) () lim f09)

Let
o) = {,\'2 ifx=1
2—x ifx>1
Find the following limits, if they exist. Then sketch the graph of g.
() [Hm g0 (b) [Jim, g0 (¢ lim g()

Let
1 —x ifx <0
h(x) =40 ifx =20
—x—1 ifx>0

Find the following limits, if they exist. Then sketch the graph of h.
(@) [lim h@x) (by lim, A (© lim h(x)

RY

Let
-1 fx=s -2
f) = 12\' if —2<x<2
1 ifx=2

(a) Find the following limits.
O liglz_ Jx)
(iii) Alirgl_ fx)

(b) Sketch the graph of f.

(¢) Where is f discontinuous?

(i) lim  f(o)
(iv)  lim, f(x)

Let
x+ 1?2 ifx<—1
fx) = 9x if—-1=sx=<1
2 — x2 ifx>1

(a) Find the following limits, if they exist.
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@ dim_fy G lim fo o (i) lm A
(iv) lim_flx) (v) limfx) (vi) lim f(x)
(b) Sketch the graph of f.

(¢) Where is f discontinuous?

Where are the following functions discontinuous?

oy [2x+ 3 ifx+4
@ flx) = {12 ify =4
1 —x* ifx=s0

) f(x)y =9x + 1 if0<x=1
(x — D? ifx>1

—x ifx<< =1

© flxy=939x if-1I=sx=1
X ifx>1
X fosx=s1

(@ fixy =3x—-2 1<x<3

x—4 if3=s=x=4
Postal rates for a first-class letter up to 200 g are given in the
following chart.

29

Up to and including 30 g S0g 100g | 200 g

Mailing cost $0.38 0.59 0.76 1.14

Draw the graph of the cost C (in dollars) of mailing a first-class
letter as a function of its mass x (in grams). Where are the
discontinuities of this function?

A taxi company charges $1.00 for the first 0.2 km (or part) and
$0.10 for each additional 0.1 km (or part). Draw the graph of the
cost C of a taxi ride, in dollars, as a function of the distance
travelled x (in kilometres). Where are the discontinuities of this
function?

Let 1 — x| iffx]<1
k=1 it <]x]=2

SO =Y =37 ifx>2

(x + 32 ifxr<< =2

Sketch the graph of f and determine any values of x at which fis
discontinuous.
For what value of the constant ¢ is the function
x+c ifx<2
X) = .
fx) {c,\‘2 +1 ifx=2
continuous at every number?
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PROBLEMS PLUS

The greatest integer function is defined by [x] = the largest
integer that is less than or equal to x. For instance, [6] = 6
[6.83] = 6, [w] = 3, and [—4.2] = —5.

(a) Sketch the graph of this function.

(b) Find “l_ig]_ [x]] and ﬁ)rgu [x].

b

(c) For what values of a does lim [x] exist?

(d) For what values of a is the greatest integer function
discontinuous?

(e) Sketch the graph of g(x) = [2x + 1]. Where is it
discontinuous?

(f) Sketch the graph of h(x) = x — [x].

1.4 USING LIMITS TO FIND TANGENTS

In Section 1.1 we found the tangent line to the parabola y = x2 at the

point (1, 1) by computing its slope as the limit of slopes of secant lines.

In general, if a curve C has equation y = f(x) and we want to find

the tangent to C at the point P(a, f(a)), then we consider a nearby point

Q(x, f(x)), where x # a, and compute the slope of the secant line PQ:
Ay W - f@)

Mpy = =
e Ax X —a

))
Q(x, f(x))

fx) = fla)
P(a,fla))

Then we let Q approach P along tne curve C by letting x approach a.
If mpy approaches a number m, then we define the tangent to be the
line through P with slope m. In the notation of limits we write
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_ oo Ay f) — fla)
= Al,\!TO Ax ‘1£r(11 X—a @

This definition of the tangent amounts to saying that the tangent line

is the limiting position of the sequence of secant lines PQ,, PQ,, PQs,

.. in the figure below as the points Q,, Q,, Qs, ... approach P along
the curve.

NSl

o

N\
\

Misher..., 3

(a) Find the slope and the equation of the tangent line to the curve
y = 2x2 + 4x — 1 at the point (2, 15).
(b) Sketch the curve and the tangent line.

(a) We find the slope of the tangent line by using Formula 1 with
a = 2and filx) = 2x* + 4x — 1.
e S = f2)
m = lim —————
=2 x =2
@2+ 4 — 1) — [2(22 4+ 42) - 1]
= lim . .
x—2 x—2
. 22+ 4x — 16
= lim ———
x—2 x—2
o 2(x* 4+ 2x — 8)
= lim —=
x—2 x— 2
L2 = 2)(x + 4)
lim —————
x—2 x— 2
= lmi 2(x + 4)

22 + 4)
=12

Il
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The slope of the tangent line at (2, 15) is 12. Using the point-slope
y — y = mx — x)) form, we find that the equation of the tangent line is
y — 15 = 12(x — 2)
which simplifies to
12x =y —-=9=0
(b) Recall that to graph a quadratic function we complete the square.

y=2x2+ 4x — 1

= 2(x2 + 2x) — 1
=20(x + 12— 1] — 1
=2(x + 1)? -3

The graph is a parabola with vertex (— 1, —3) that opens upward.
(@9

y =2x2 + 4x — 1
(2,15)

(—1,—3)\’/ t

Another expression for the slope of the secant line PQ is

_ fla+ h) — fla)

’”PQ - h

(The diagram illustrates the case where 1 > 0 and Q is to the right of
P. If h < 0, however, Q would be to the left of P.) Notice that as x
approaches a, / approaches 0, and so the expression for the slope of
the tangent line becomes

. Ay . fla+h) — fla)
"= Al.\!TO Ax /15% h @
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/
)l
Qa+h,fla+h))
flath) = fla)
P(a, fla)) i
I i
l ! o
0 [ a a+h N X
lixample 2 Find the tangent line to the hyperbola xy = 1 at the point

(-2

The equation of the hyperbola can be written as y = % Thus, using

Formula 2 with f(x) = _%, we obtain the slope of the tangent line:
L (=2 4+ k) = f(=2)
m = lim
h—0 h
1 _ 1
_ 5 -2+ h —2
N hgl}) h
1 3 1
. =2+ h 2
= lim
h—0 h
24+ (=2+h
. 2—=2+ h)
= lim ———
h—0 h
I h
= lim ———
=0 2(—=2 + h)h.
1
o0 2(—2 + h)
1
2(=2)
_ 1
4

The equation of the tangent line at ( —2, —%) is

I

y+1 —}‘(,\‘4—2)
4y +2=—x—2

x+4dy+4=0
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The hyperbola and the tangent line are shown in the diagram.

lxample 3 (a) Find the tangent line to the curve y = \/x — 2 at the point
(6,2).
(b) Graph the curve and the tangent line.
Solution  (a) We find the slope using Formula 2 with f(x) = V/x — 2.

f6 + h) — f(6)

m = lim
h—0 h
. VO +h—-2-V6-2
= lim
h—0 h
. V4+h-2
= lim ————
h—0 h
Rationalize the — lim Y 4+h—-2 (\/4 + h + 2)
numerator. h—0 h N4+ h+2
fig e B — %
=0 (VA T B+ 2)
h

= h(\/4 T h+2)

h—>0 \/4 +h+ 2
1

N e )

The equation of the tangent line at (6, 2) is

y—2= \—6)
4y—8—x—6
x—4y+2=0
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(b) We graph the curve y = Vx — 2 by taking the square root function
y = V/x and shifting it two units to the right.

A
y

: " >
t + T Lo

=2 =1 O ) ¥

(93

VRIS 1 A
EXRRCISE 1.4

B 1. (a) Find the slope of the tangent line to the parabola y = 2x — x?
at the point (2, 0)-
(i) using Formula 1 (ii) using Formula 2
(b) Find the equation of the tangent line.
(c) Graph the parabola and the tangent line.

2. (a) Find the slope of the tangent line to the cubic curve y = x3 at
the point (1, 1).
(i) using Formula 1 (i1) using Formula 2
(b) Find the equation of the tangent line.
(c) Graph the curve and the tangent line.

Find the slope in Example 1 using Formula 2.
Find the slope in Example 2 using Formula 1.
Find the slope in Example 3 using Formula 1.

O o

(a) Find the slope of the tangent lines to the parabola

y = x2 + 4x — 1 at the points whose x-coordinates are given.

i -3 (i) —2 (i) O

(b) Graph the parabola and the three tangents.
7. For each of the following curves
(a) find the slope of the tangent at the given point,
(b) find an equation of the tangent at the given point,
(c) graph the curve and the tangent.

i) y=4—x*at(-2,0)

(ii)) y =x2 — 6x + 5at (2, —3)

(i) y =1 — x3at (0, 1)

1
(iv) y = ——at(3,5)

(v) ¥y = Vx + 3 at(6,3)
(vi) y = 2x*at (—1,2)
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8.

- 10.

11.

Find the equation of the tangent line to the graph of the given
function at the given point.
(a) fix)y =4 — x + 322, (—1,8)
(b) fix) = x* — «x, (0,0)
2x + 1
() glx) = — » (2,3)
x—1
|
d )= —, (1,1
(d) g(x) g (1,1

(a) Find the slope of the tangent line to the parabola
y = x2 + x + 1 at the general point whose x-coordinate is a.
(b) Find the slopes of the tangents to this parabola at the points

whose x-coordinates are —1, —1,0, 1, 1.

(a) Find the slope of the tangent to the parabola y = 3x? + 2x at
the point whose x-coordinate is a.

(b) At what point on the parabola is the tangent line parallel to the
liney = 10x — 27

Find the points of intersection of the parabolas y = %xz and

y=1-— %xz. Show that at each of these points the tangent lines to

the two parabolas are perpendicular.

If a car is driven on a highway for three hours and the distance covered
is 270 km, then it is easy to find the average velocity:

distance travelled

average velocity = i lansed
ime elapse

_ 210
3
= 90 km/h

But if you watch the speedometer of a car while travelling in city traffic,
you will see that the indicator does not stay still for very long; that is,
the speed of the car is not constant. We assume from watching the
speedometer that the car has a definite velocity at each moment, but
how is the ‘‘instantaneous’’ velocity defined? Before giving a general
definition, let us investigate the situation of a falling ball in the following
example.
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Suppose that a ball is dropped from the upper observation deck of the
CN Tower, 450 m above the ground. How fast is the ball falling after
3s?

In trying to solve this problem we use the fact, discovered by Galileo
almost three centuries ago, that the distance fallen by any freely falling
body is proportional to the square of the time it has been falling. (This
neglects air resistance.) If the distance fallen after ¢ seconds is denoted
by s = f(f) and measured in metres, then Galileo’s law is expressed
by the equation

s = f(t) = 4.9

The difficulty in finding the velocity after 3 s is that we are dealing
with a single instant of time (+ = 3) so there is no time interval involved.
However, we can approximate the desired quantity by computing the
average velocity over the brief time interval of a tenth of a second from
t=3tot = 3.1

distance travelled

average velocity = i lansed
ime elapse

_As
T At
_f3.1) — f3)

0.1
_4.93.1)* — 4.93)
B 0.1
= 29.89 m/s

The following table shows the results of similar calculations of the
average velocity over successively smaller time periods.

time interval average velocity (m/s)
3<r<4 34.3
3=<r=<3.1 ' 29.89
3=<r<305 29.645
3=<r=<3.01 29.449

3 <¢=<3.001 29.4049

It appears that, as we shorten the time period, the average velocity
becomes closer to 29.4 m/s. Let us compute the average velocity over
the general time interval 3 < ¢t <3 + I
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) As
average velocity = —

At
_fB+ h) — f(3)
B h
~4.93 + h)? — 4.93)
B h
4909 + 6h + h? = 9)
- h
_4.9(6h + 1Y
B h
=294+ 49 ifh+0

If the time interval is very short, then A is small, so 4.9k is close to 0
and the average velocity is close to 29.4 m/s. The instantaneous veloc-
ity when r = 3 is defined to be the limiting value of these average
velocities as i approaches 0. Thus, the (instantaneous) velocity after
3sis

v = Ilirr}) (29.4 + 4.9h)

29.4 m/s @

Notice that we did not put # = 0 in the expression for the average

velocity because that would have resulted in the expression g, which

has no meaning. What we have done is to compute the instantaneous
velocity as the limit of the average velocities as i approaches 0.

You may have the feeling that the calculations in Example 1 are
very similar to those used in finding tangent lines. In fact, there is a
close connection between the tangent problem and the problem of
finding velocities. If we draw the graph of the distance function of the
ball and we consider the points P(3,4.9(3)%) and Q(3+h,4.93 +h)?)
on the graph, then the slope of the secant line PQ is

4.93 + h)* — 4.9(3)*
My = p

which is the same as the average velocity over the time interval
3 =<1r=3 + hthat we found in Example 1. Therefore the velocity at
time f (the limit of these average velocities as i approaches 0) must be
equal to the slope of the tangent line at P (the limit of the slopes of
the secant lines).
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A /
s s = 4.97 /x” s
0 s = 4.9¢

// | slope of secant line

= average velocity "slope of tangent

50T  py Py’ =instantaneous
velocity

>
—

ofl 7 3 3+7 7 0

In general, suppose an object moves along a straight line according
to an equation of motion s = f{(r), where s is the displacement (directed
distance) of the object from the origin at time r. The function that
describes the motion is called the position function of the object. In
the time interval from t = atot = a + h, the change in position is

As = fla + h) — f(a)

The average velocity over this time interval is

As _ fla + h) — fla)
At h

which is the same as the slope of the secant line PQ.

Now suppose we compute the average velocities over shorter and
shorter time intervals [a, a+ h]. In other words, we let i approach 0.
As in Example 2, we define the velocity (or instantaneous velocity)
v(a) at time ¢ = a to be the limit of these average velocities:
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Instantaneous Velocity

fla + h) — fla)
AL L )

-0 At  h—0 h

This means that the velocity at time t = a is equal to the slope of the
tangent at P.

lixample 2 The displacement, in metres, of a particle moving in a straight line is
given by s = 1> + 2f, where ¢ is measured in seconds. Find the velocity
of the particle after 3 s.

Solution  If we let f(f) = > + 2t, then
3y — lim [OH 1 = )
h—0 h
I B+ hr+ 23+ h — [32+ 203)]
- ]'E)I;l) h
94+ 6h+ h+6+2h— 15
= lim
h—0 h
. 8h + h?
= lim
h—0 h

Il

]}gr}) @®+h =28

The velocity after 3 s is 8 m/s. %

Y T oy atoec of Chanocoe
JLILC d LTS UL U lldlleg©
£

Suppose that y is a function of x and we write y = f(x). If x changes
from x, to x,, then the change in x is

Ax = x, — x|

and the corresponding change in y is
Ay = flx) — fix)

The difference quotient

& _ J(x) = f(x)

Ax Xy — X

is called the average rate of change of y with respect to x over the
interval x; < x < x,. By analogy with velocity, we consider the average
rate of change over smaller and smaller intervals by letting x, approach
x; and therefore letting Ax approach 0. The limit of these average rates
of change is called the (instantaneous) rate of change of y with respect
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to x at x = x; and, as with velocity, can be interpreted as the slope
of the tangent to the curve y = f(x) at P(x,, f(x))).

Ay o) — flx
Rate of change = lim 2Y _ im fr) = flx)
Ax—0 Ax A Xy — X

A thermometer is taken from a room where the temperature is 20°C to
the outdoors where the temperature is 5°C. Temperature readings (T')
are taken every half-minute and are shown in the following table. The
time (f) is measured in minutes.

t | 00 05 10 1.5 20 25 30 35 40 45 5.0

T l 20 15 12 98 83 72 65 60 57 55 53

(a) Find the average rate of change of temperature with respect to time
over the following time intervals:
1) 2=sr<4 i) 2<r=35
(i) 2<r=<3.0 (iv) 2=<tr<25

(b) Sketch the graph of T as a function of f and use it to estimate the
instantaneous rate of change of temperature with respect to time
when t = 2.

(@) (i) Over the interval 2 < 1 < 4 the temperature changes from
T=283tT = 5.7°so

AT =T@4) —T2) =57 — 83 = —2.6°

while the change in time is A7 = 4 — 2 = 2 min. Therefore
the average rate of change of temperature with respect to

time is
g_—2.6__130/.
AL o .3%min
The negative rate of change indicates that the temperature is
decreasing.
(i AT T(3.5)—-T2) 6—-83  —-23 1.5%min
i) — = = = £ —1.
At 35—2 1.5 1.5
... AT T@B.0)—-TQ2) 65 —28.3 .
el — = = —1. o
(ii1) Y 32 " 8°/min
, AT TQ.5)—-TQ2) 7.2-383 ;
— = = = =2.2°
W A= 2522 0.5 fmin

(b) We plot the given data and use them to sketch a smooth curve that
approximates the graph of the temperature function. Then we draw
the tangent at the point P where x = 2 and after measuring the
sides of triangle ABC, we estimate that the slope of the tangent
line is
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AC 37
So the rate of change of temperature with respect to time after two
minutes is about —2.5%min.

1T
—120

161

=~

sle 4 A spherical balloon is being inflated. Find the rate of change of the
volume with respect to the radius when the radius is 10 cm.

Solution If the radius of the balloon, in centimetres, is r, then the volume, in
cubic centimetres, is given by

V(r) = ‘—3‘171'3

When r = 10, the rate of change of V with respect to r is
AV . V() = v({0)
= lim ————
Ar—0 Ar r—10 r— 10

s — dm(10)3

= lim
r—10 r— 10
= lim 4w ————’.3 — I

r—103" r — 10
4 (r = 10)(* + 10r + 10%

= ,~1£1110 3 10 (difference of cubes)
= rl—i>n|]0 (2 + 10r + 10?)

= ‘—3‘11'[102 + 10(10) + 107
= 400
= 1260

AN

The rate of change of V with respect to r is about 1260 cm*/cm. 'S
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Rates of change occur in all of the sciences. Physicists are interested
in the rate of change of displacement with respect to time (called the
velocity). Chemists who study a chemical reaction are interested in the
rate of change in the concentration of a reactant with respect to time
(called the rate of reaction). A textile manufacturer is interested in the
rate of change of the cost of producing x square metres of fabric per
day with respect to x (called the marginal cost). A biologist is interested
in the rate of change of the population of a colony of bacteria with
respect to time. All these rates of change can be interpreted as slopes
of tangents. This gives added significance to the solution of the tangent
problem. Whenever we solve a problem involving tangent lines, we
are not just solving a problem in geometry; we are also implicitly solving
a great variety of problems involving rates of change in the natural and
social sciences as well as in engineering.

If a ball is thrown into the air with a velocity of 30 m/s, its height in
metres after ¢ seconds is given by y = 30r — 4.9¢2.
(a) Find the average velocity for the time period beginning when

t = 2 and lasting

(i) 1s (i) 0.5s (i) 0.Is (iv) 0.05s (v) 0.0ls
(b) Find the instantaneous velocity when t = 2.
The displacement in metres of a particle moving in a straight line is
given by s = 2 — 4t + 3, where ¢ is measured in seconds.
(a) Find the average velocity over the following time periods:

i 3<r<5 () 3sr=<4
(i) 3=r<3.5 iv) 3 =r=<3.1

(b) Find the instantaneous velocity when ¢ = 3.
(c) Draw the graph of s as a function of ¢ and draw the secant lines

whose slopes are the average velocities in part (a).
(d) Draw the tangent line whose slope is the instantaneous velocity

in part (b). :
A particle moves in a straight line with position function
s = 2t2 + 4t — 5, where 1 is measured in seconds and s in metres.
Find the velocity of the particle at time t = a. Use this expression
to find the velocities after 1 s, 2 s, and 3 s.

(a) Use the data of Example 3 to find the average rate of change of
temperature with respect to time over the following time
intervals:

1 3=
(iii) 1 =

(b) Use the graph of T to estimate the instantaneous rate of change

of T with respect to r when ¢t = 3.

=5
<3

t
t
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5.

The population P of a city from 1982 to 1988 is given in the
following table:

Year l 1982 1983 1984 1985 1986 1987 1988

P (in thousands) [ 211 219 229 241 255 270 286
(a) Find the average rate of growth
(i) from 1984 to 1988 (i) from 1984 to 1987
(iii) from 1984 to 1986 (iv) from 1984 to 1985
(b) Estimate the instantaneous rate of growth in 1984 by measuring
the slope of a tangent.

(a) Ify = %, find the average rate of change of y with respect to x

over the interval 3 < x < 4. Illustrate by drawing the graph of
the function and the secant line whose slope is equal to this
average rate of change.

(b) Ify = % find the instantaneous rate of change of y with respect

to x at x = 3. Draw the tangent line whose slope is equal to
this rate of change.

(a) A cubic crystal is being grown in a laboratory. Find the average
rate of change of the volume of the cube with respect to its
edge length x, measured in millimetres, when x changes from

(i) 4t05 (ii) 4to 4.1 (iii) 4 to 4.01

(b) Find the instantaneous rate of change when x = 4.

If a tank holds 1000 L of water, which takes an hour to drain from

the bottom of the tank, then the volume V of water remaining in the

tank after + minutes is
t 2
V = 1000(1 60> 0=r=2060

Find the rate at which the water is flowing out of the tank (the

instantaneous rate of change of V with respect to ¢) after 10 min.

If an arrow is shot upward on the moon with a velocity of 50 m/s,
its height in metres after 1 seconds is given by s = 50t — 0.83#2.
(a) Find the average velocity for the time period beginning when

t = 1 and lasting

1 1s () 05s (@Gi) 0.1s (v) 0.05s (v) 0.0Is
(b) Find the instantaneous velocity when ¢t = 1.
(c) Find the velocity after ¢ seconds.
(d) When will the arrow hit the moon?
(e) With what velocity will the arrow hit the moon?
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£

Lxample 1

Cilésing
Solution

A sequence is a list of numbers written in a definite order:

rla tZa r37 r4a seny fn’

The number ¢, is called the first term, t, is the second term, and in
general 7, is the nth term. We will be considering only infinite sequences,
namely, those in which each term ¢, has a successor ¢, , .

For every positive integer n there is a corresponding number t,, so
a sequence can be regarded as a function whose domain is the set of
positive integers. But we usually write #, instead of the function notation
(n) for the value of the function at the number .

List the first five terms of the sequence defined by

n
n+1

Iy =

and draw the graph of the sequence.

We have

[‘l: = =5

[SS11)

i
[S1E-

,f2 ,13: ,f4 st5:'56

BN—

This sequence can therefore be described by indicating its initial terms
as follows:

22345 6 '

The graph of this sequence is shown below.

1y

Y

01 234567 8 9101112131415 '"
@
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In Example 1, notice that the terms in the sequence are all less than
1 (because n < n + 1) but they get closer and closer to 1 as n increases.
In fact, we can make the terms 7, as close as we like to 1 by making
n large enough. We say the limit of this sequence is 1 and we indicate
this by writing

. n
lim =
n—opn + 1

In general we say that the sequence with general term ¢, has the
limit L, and we write

lim ¢, =L

n—w

if the terms 1, are as close as we like to the number L for sufficiently
large n.

1
Example 2 Find lim -.

n—o
Solution  The sequence defined by 7, = 1is

1.1 1 1 11

12034506

As n becomes larger, % becomes smaller. In fact, we can make ,—11 as

close as we like to 0 by making n sufficiently large. For instance, we

have
1<0001 if >—1——1000
no b 0001
Therefore
1
Im — =0
n—® n

A\
v

0 1 2 3456 78 91011127

e
4

In the following example and in the exercises we make use of the
result of Example 2 and the following more general fact:
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1
Iim — =0 ifr>0

n—ow pr

In addition, we use the fact that the properties of limits stated in Section
1.2 are also valid for limits of sequences.

n —n
Find lim ————.
n—ow 202 + 1

We divide the numerator and denominator by the highest power of n,
namely n?:

n* —n i 1

n?—n B n? B n

2nr + 1 2m2+ 1 1

2 2+ 2

n n
1
2 ==
: n- —n . n

Thus lim ——— = lim

n—wo 22 + 1  n—oo 1
2+ =
n

lim 1 — lim —

n— o0 n—>o pn

lim 2 + lim 1

n—o n—>w o

n
_1-0
2+0
1 e
— 3 &
Find the following limits, if they exist.
(@) Jim (=1 (b) lim (3

(a) The terms of the sequence t, = (—1)" are
-1,1, -1, 1, =1, 1, ...
As n increases, the terms do not approach any particular number.

They oscillate between —1 and 1 indefinitely, as shown in the
graph.

z"
—+1

7
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Therefore lim (—1)" does not exist.

n—w

(b) The terms of the geometric sequence

are

1 11 1 1 1

The denominators 2" become large as n increases, so

. 1 AN
lim — =0 )

\ /
n— o 2” (>

By the same type of reasoning as in Example 4(b) we have the
following result.

If | 7| <1, then lim r* = 0.

n—ow

Some sequences do not have a simple defining equation but are
defined recursively; that is, terms are defined by using preceding terms
of the sequence as in the following example.

txample 5 The Fibonacci sequence is defined recursively by the equations
fl = 1’f2: l,f;l:f;l—l +.ﬁ1—2 (”23)

Find the first eight terms of the sequence.

Solution  The first two terms are given; the remaining terms are calculated by
adding the two preceding terms.
fi=1
h=1 :
h=h+fi=14+1=2

fi=fi+f=2+1=3
f=fi+f=3+2=5
£=5+3=38
fi=8+5=13

fi=13+8 =21

The Fibonacci sequence arose when the 13th-century Italian math-
ematician known as Fibonacci solved a problem concerning the breed-

ing of rabbits (see Question 7 in the Exercise). n\\\)
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The idea of a sequence having a limit is implicit in the decimal
representation of real numbers. For instance, if we let , be the number
obtained from the decimal representation of r by truncating after the
nth decimal place, then

t = 3.1

L = 3.14

3 = 3.141

ty, = 3.1415

ts = 3.141 59

tc = 3.141 592
and "lglga t, =T

The terms in this sequence are rational approximations to 4r.

nc P

In the fifth century B.C. the Greek philosopher Zeno of Elea posed
four problems, now known as Zeno’s paradoxes. These problems were
intended to challenge some of the ideas about space and time held at
that time.

Zeno’s second paradox concerns a race between the Greek hero
Achilles and a tortoise, who was given a head start. Zeno argued that
Achilles could never pass the tortoise. His argument runs this way:
Suppose that Achilles starts at position @, and the tortoise starts at
position ¢;. When Achilles reaches the point a, = t,, the tortoise is
further ahead, at position #,. When Achilles reaches a; = t,, the tortoise
is at 3. This process continues indefinitely, so it appears that the tortoise
will always be ahead! But this defies common sense.

ap as ds das

123 3 I

One way of explaining the paradox is through the idea of a sequence.
The successive positions of Achilles (a,, a,, as, ...) and the successive
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positions of the tortoise (¢, t,, 3, ...) form sequences {a,} and {z,} where
a, < t, for all n. It can be shown that both sequences have the same
limit:

lim a, = p = lim ¢,

n—>o n—ow

It is precisely at this point p that Achilles overtakes the tortoise.

A
A

State the limits of the following sequences, or state that the limit
does not exist.
11 1 1 1 1y
(a) jagaﬁam’ 243"'- (3)5
(b) 5, 4;, 4;,4}1, 4§, 4+ ’ll,
(c) 1,2,3,4,5,

d 3,3,3,3,3, 3
() 1,0,4,0,4,0 }‘ 0,
(f)561526‘5461 6+(_—1)n
nr 9% 6 55, B, . R
(g) 1’%7 1’%’ 1)%’ 1’%’ L%
List the first six terms of the following sequences.
(a)[_n—l ®) 1 = 2n
"o — 1 "o+ 1
—1 n—1
© f = n2 @ 1, ==
(e n =11 1 (=2
= > 'n = ’
! v

(f) fl = 17 f2 = 27 tn = n—l - u 2(" )
Find the following limits or state that the limit does not exist.

o1 . 1
Wt ® tn
|
@© lim (6 ¥ 1) @ Jlim - e 1
n— o ¥ n—ow —
6n + 9 .
li f lim 5n
€ lim - — 0 S
241 + 1)
® lim o (h) lim %—;)
n—w Jpnc — n—o 1Ly
—1 n+1 . n
@ Bm G Jim (—)

n—o n
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n . -
Kl lim (= 1)"'n
() nl—rgo nt+ 1 O
(m) ,,11330 5 (n) lim P+ n?)
1 +n— 20 1
lim ———— lim —
© s - n + n? ®) s Vn
o1 1 —
lim — ) lim ——————
@ e ® ”lgr:o 1 + 20’
© Jlim () ® Jim ()
Hrn =03, =033 = 0.2333, 1, = 0.3333, and so on, what
is lim ¢,?
If
N2
n ”2

use your calculator to find ¢, forn = 1,2, 3,4,5,6,7, 8,9, 10,
20, 50, and 100. Does the limit

exist? If so, guess its value.
If
t, = V/n
use your calculator to find ¢, forn = 1,2, 3,4,5,6,7, 8,9, 10,
50, 100, 500, 1000, and 10 000. Then guess the value of the limit

lim Vn

n—w

Fibonacci posed the following problem: Suppose that rabbits live
forever and that every month each pair produces a new pair that
becomes productive at age two months. If we start with one
newborn pair, how many pairs of rabbits will there be in the nth
month? Show that the answer is f,, the nth term of the Fibonacci
sequence defined in Example 5.

Find the limit of the sequence - ‘
V2, V2vV2, V2V2, VIV 225 -

by expressing each term as a power of 2.

(a) A sequence is defined recursively by
1
= 1,8 = —— =2
! wmorl =
Find 1, t3, 1, t5, 15 and guess the value of lim 7,.

n—>o

51

(b) Assume that lim ¢, = L exists. What is the value of lim ¢,_,?
n—->w n—w

Find the value of L by taking the limit of both sides of the
recursion equation.
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1.7 INFINITE SERIES
Does it make sense to talk about adding infinitely many numbers? You
might think this is impossible because it would take an infinite amount
of time. But there are situations in which we implicitly use infinite
sums. For instance, in decimal notation the symbol
= 0.444 444 444 ... means
4 4 4 4 4
10t 10t e T woe T
and so, in some sense, it must be true that
y A 4 =4
04 =3 6t 100 T 000 T 10000 T - T 9

Another situation that gives rise to an infinite sum occurs in one of
Zeno’s paradoxes, as passed on to us by Aristotle: ‘‘A man standing
in a room cannot walk to the wall. In order to do so, he would first
have to go half the distance, then half the remaining distance, and then
again half of what still remains. This process can always be continued
and can never be ended.”’

JL__IL

=

&._{
|

=<

Of course we know that the man can actually reach the wall, so this
suggests that perhaps the total distance can be expressed as the sum of
infinitely many smaller distances as follows:

— 11141 I
=1+t lr v o+ L+

In order to make sense of this equation, we let S, be the sum of the
first n terms of the series. Then

S =4=05

S, =1+1=075
S;=1+1+1=0875

Sy =41+41+1+1 =09375
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Ss=4+t+1+L+L=0096875

Ss=4+1+l4+ L+ L4 1 =00984375
S;=L i+l b4+ L+ 1 =09921875
So=1+1+ .+ b= 0999023 44

Sie =1+ 1+ .+ 4 = 0.999 984 74

Notice that as we add more and more terms, the partial sums become
closer and closer to 1. In fact, by making n large enough (that is, by
adding sufficiently many terms of the series), we can make the partial
sum S, as close as we like to the number 1. It therefore seems reasonable
to say that the sum of the infinite series is 1 and to write

1 1 i 1 1 =
IT+l+l+d+ o+ L+ =1

In other words, the reason the sum of the series is 1 is that

lim S, =1

n—w

We use a similar idea to determine whether or not a general series

h+ b+t + .+ + .

has a sum. We define the partial sums as follows.
Sl - t|
S2 - tl + 1
S3 = + fz + 3
S4 - tl + 1y + t; + ty

S

Il

h+tb+6+ ...+,

If the infinite sequence S, S5, ..., S,, ... of partial sums of the series
ty + 4+t + ... +t,+ ... hasalimit L, then we say that the sum
of the series is L and we write

f1+f2+f3++f"+:L
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In sigma notation this becomes
>oh=L
n=1

If a series has a sum, it is called a convergent series. If not, it is called
divergent.

Uxample 1T Determine whether the following series are convergent or divergent.
@ 1L+ 1+1+1+..4+1+..
b)) I —1+1—-1+ ..+ (Dt + ..

Solution (a) S, =1+ 1+14+ ..+ 1=mn

n terms
Therefore lim S, = lim n does not exist. It follows that the given

n—ow n—ow

series does not have ‘a sum; that is, it is divergent.

(b) S =1
S=1-1=0
Ss=1—-1+1=1
SS=1-1+1-1=0

The sequence of partial sums is
1,0,1,0, 1,0, ...

which has no limit. Thus the series I — 1 + 1 — 1 + ... does
not have a sum; that is, it is divergent. \TD

iple 2 Find the sum of the geometric series

a+ar + ar>+ ...+ a4+ .. (a + 0)

when it exists.
Solution  The nth partial sum of the geometric series is

S, =a+ ar + ar*+ ... + ar"!

This is a finite geometric series with first term a and common ratio 7.
We recall that, for » # 1, its sum is

1 el
g = Bl = )
1 —r
Case 1: If | r| < 1, thatis, —1 < r < I, we discovered in Section
1.6 that lim " = 0. Therefore

n—o
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xam ‘»‘j‘fl“ P |
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i 8, = fig S0 — 7
n— o n—w | —F
_a(l - 0)
R
. a
1=

55

Thus, for || < 1, the geometric series is convergent and its sum is

a
1—r
Case 2: If r = 1, the geometric series becomes

a+a—+a+a+ ..

which does not have a sum. (See Example 1(a)).
Case 3: If r = —1, the geometric series becomes

a—a-+a—a+ ..

which does not have a sum. (See Example 1(b)).

Case 4: 1If | r| > 1, then lim r" does not exist. Therefore lim S,
n—>ow n—> o

does not exist and the geometric series does not have a sum.

We summarize the results of Example 2 as follows:

If | | < 1, the infinite geometric series
a+ar + a*+ ...+ art+

is convergent and has the sum

If | r| = 1, the geometric series is divergent.

In sigma notation we can write

21(11'”" =1 p |r| <1
n=

1 —

Find the sum of the series

16— 12 +9 -2 48—

(a #0)

=
O
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The given series is a geometric series with first term ¢ = 16 and
common ratio r = —3. Since [r| = 3 < 1, the series is convergent

and its sum is

S = 73 =
L= (-9
] Express the repeating decimal 2.135 as a fraction.
Solution 2.135 = 2.135 353 535 ...
=21+ 3B+ B4 B+

1000 ' T00000 ' 10 000 000
After the first term, the series is a geometric series with

=16 X

TIN
Il
<R

16 16
1
4

_ 35 A
a = 1555 and r—m—0.0l
Therefore
35
__ 1000
2135 =21+ ——
1 —0.01
_ 35
=21+ 1000(0.99)
_ 21 35
=1 t 350
— 2114
990
— 1057
495

B 1. Find the sum of each of the following series or state that the series
is divergent.

(@ I+4i+1+L+ .. b 1-2+3-%+ ..
© 1-2+28-18 4+ @ 3+i+%+3:+
e 1 —2+4—8+ .. (f) 60 + 40 + 8 + 160 4

(g) 0.1 + 0.05 + 0.025 + 0.0125 + ...
() -3+3-3+3-3+ ..

2. Find the sum of each of the following series.
n—1 n
@ 220 ) 2 (-3

3. Express the following repeating decimals as fractions.

(a) 0.1 (b) 0.25
(c) 0.41 (d) 0.157
(e) 1.123 (f) 2.3456

(g) 0.429 113 (h) 6.814 72
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4. For what values of x are the following series convergent? In each

case find the sum of the series for those values of x.

2 3

@ 1 +x+x2+2+ .. (b)1+)—;+%+;—7+...
1 | 1
(c) 1 +—+—2+—3+
X x X
@ 1+x—-—4)+@x—-—4)>+x-—-4>+ ..
(e) 22"x"
n=1
5. The series
1 1 1 (=1t
1l — —+————+ ..+ o
64 729 4096 n®

is not a geometric series. Use your calculator to find the first eight
partial sums of this series. Does it appear that this series is
convergent? If so, estimate its sum to five decimal places.

- 6. The series
1 1 1 1
1><2+2><3+3><4+"'+n(n+1)+
is not a geometric series.
(a) Use your calculator to find its first 15 partial sums.
(b) Use the identity
1 1 1
kk + 1)k k+1

to find an expression for the nth partial sum S,,.
(c) Use part (b) to find the sum of the series.
(d) How many terms of the series would be required so that the

partial sum differs from the total sum by less than 0.001?

7. A right triangle is given with ZA = 0 and AC = 1. CD is drawn
perpendicular to AB, DE is drawn perpendicular to BC, EF is
perpendicular to AB, and this process is continued indefinitely as in
the figure. Find the total length of all the perpendiculars

CD + DE + EF + FG + ...
in terms of 6.
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n D ('] {
VA TUINC DN,

1. Use the given graph of f to state the value of the limit, if it exists.

y
2
/ 1
0 4 X[
—2
(@ Mm, S by lim
(¢ Mm, /o (@) lim f(x)
() ,Mim, f() ) lim f)
(g [lim, ) (hy lim f0x)

2. State whether the function f, whose graph is shown in Question 1, is
continuous or discontinuous at the following numbers.

(@ 1 (b) 4 (c) 7
3. Find the following limits.
lim (3x* + 7x — 16) iy AT B
@ lim ® Jim 25
x2—2x — 8 X —2x—8
lim ————— d) lim S————
© lm e ¥ 12 @ M2
) x2 — 25 . x—4
© My R e
VZ¥i-V2I o (=34 h? -9
(g) lim _t—\/_— (h) lim %
1—0 t h—0 h
4. Find the following limits, or state that they do not exist.
. x—6 . ®—1
@ Am ey L e
4
' : y'— 16
© I}I—IH) 2th ;Z @ )h—I>n2 ¥+ 2y =y =2y
h
. 4 P 1
(e Jm, VE8+ £ © fim, : i |
r— X =
=1 -1
() lim = =1 (h) lim = — 1]

P S— S



5.

10.

11.

12.

1.8 REVIEW EXERCISE 59

Let 1 —x ifx<<—1

fo) = {xz ifx=—1
(a) Find the following limits, if they exist.
M lim_ f G lim A0 G Lm0
(b) Sketch the graph of f.
Let X3 ifx <0
glx) = 142 ifosx<1
I+ 2x —x2 ifx>1

(a) Find the following limits, if they exist.
M lim g @ lim g (i) lim g0
(v) lim g () lim g() (vi) lim g(x)
(b) Sketch the graph of g.
(c) Where is g discontinuous?

A daytime coin-paid phone call from Toronto to Montreal costs
$1.95 for the first minute and $0.45 for each additional minute (or
part of a minute). Draw the graph of the cost C (in dollars) of the
phone call as a function of the time ¢ (in minutes). For what values
of ¢ does this function have discontinuities?
The point P(1, —2) lies on the curve y = x* — 3x.
(a) If Q is the point (x, x3—3x), find the slope of the secant line PQ
for the following values of x:

i 2 (i) 1.5 @) 1.1 (iv) 1.01
(b) Find the slope of the tangent line to the curve at P.
(c) Find an equation of the tangent line to the curve at P.
(d) Graph the curve and the tangent line.

Find the equation of the tangent line to the curve y = x* at the point
(—=1,1).
If a stone is dropped off a 200 m high cliff, then its height after ¢
seconds, and before it hits the ground, is & = 200 — 4.972.
(a) Find the average velocity of the stone for the following time

periods. ' ‘

G 1=sr=<2 Ggi) 1sr=s1.1

(b) Find the instantaneous velocity when ¢ = 1.
A spherical balloon is being inflated. Find the rate of change of the
surface area of the balloon with respect to the radius when the radius
is 10 cm. (Use the formula S = 42, where r is the radius of a
sphere and S is the surface area.)

Find the following limits or state that the limit does not exist.

1.3 142
(@ lim (2 -t —2> ®) lim "
n— n n n—w | — 3n

(c) Jm (1.1)" () lim =
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13.

14.

15.

16.

Find the sum of the series or state that it is divergent.
_ 1 _ 1 14 ]
(@ 6 — 1 +¢—5%+ .. ®b) g+3+1+3+ ..

Express the repeating decimal 1.245 as a fraction.

For what values of x is the series », (x + 1) convergent? Find the

n=1
sum of the series for those values of x.
A sequence is defined recursively as follows:
tl = \/§’ Livi =V 3f,, (n = 1)

Find lim ¢,.

n->9
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1.

Find the following limits.

X2+ 5
I
(@) lim [~

x+1
B B ——————
®) sl — Ax — 5

1
VA

(¢) lim

-1 x—1
The points P(2, —1) and O(3, —4) lie on the parabola
y = =¥ ¥ 2% — 1.
(a) Find the slope of the secant line PQ.
(b) Find the slope of the tangent line to the parabola at P.
(c) Find the equation of the tangent line at P.
(d) Graph the parabola, the secant line, and the tangent line.
Let 1 —x2 ifx<0
f&) = {2,\— 1 ifx>0
(a) Find the following limits if they exist.

(i) lim f(x) (i)  lim, f(x) (i) lim f(x)
(b) Sketch the graph of f.
(c) Where is f discontinuous?

The displacement in metres of a particle moving in a straight line is

given by s = 51> — 6t + 14, where t is measured in seconds.
(a) Find the average velocity over the time interval 2 < < 3.
(b) Find the instantaneous velocity when t = 2.
) 1 6n — 2
Evaluate lim | — + ;
n—o \8"  2n — 3
Find the sum of the series
27 81

12-9+=—-—+ ..
Pt T T ‘
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FOUNDERS OF CALCULUS

S ir [saac Newton was born in the village of Woolsthorpe, England,
on Christmas day in 1642, the year of Galileo’s death. The signs
of genius did not emerge in high school, but while he was a student
at Trinity College, Cambridge, he read the works of Euclid and Des-
cartes and these inspired him. In 1665, Cambridge was closed because
of the plague and, while at home on this enforced vacation, Newton
made four of his greatest discoveries: the law of gravitation, the nature
of light and colour, the method of calculus, and the extended binomial
theorem [the expansion of (¢ + b)" as an infinite series when n is not
a positive integer].

The Greeks had started calculus with their calculations of areas, and
mathematicians of the early seventeenth century, such as Fermat and
Descartes, had furthered the subject by solving tangent problems. But
Newton undertook the first systematic study of calculus. In particular,
he was the first to study limits and derivatives, which he called fluxions.

His famous book Principia Mathematica of 1687 is perhaps the
greatest contribution ever made to the mathematical and physical lit-
erature. In it, he applied his method of calculus to the theory of gravi-
tation, to hydrostatics and wave motion, and to astronomical problems.
He studied the action of the planets on each other, the disturbing action
of the sun on the moon, and the variations of the orbit of the moon.

Newton was a professor at Cambridge University and became renowned
as the most absent-minded professor of all time. He often forgot to eat
meals. This absent-mindedness was a consequence of his extreme powers
of concentration. When asked how he was able to solve a difficult
problem, he replied: ‘‘By always thinking unto it.”’

Newton was knighted by Queen Anne in 1705. This was the first
time that a man of science had been so honoured. When he died in
1727, he was buried in Westminster Abbey with the pomp of a king’s
funeral. He was very famous in his own time, even to the general
public. Alexander Pope wrote

Nature and nature’s laws lay hid in night,
God said, “‘Let Newton be,”’ and all was light.
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PROBLEMS PLUS

What is wrong with the following calculation using infinite
series?

0=0+0+0+ ...
ad-HD+a0 -+ -1 + ..
I—1+1—-14+1-=1++ ..
I+ (-1 + D)+ (-1+1D+(=1+1)+ ..
1+0+0+0+ ..
=1

I

Il

Il

63
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REVIEW AND PREVIEW TO CHAPTER
EXERCISE 1 4. (a) increases by 12 (b) decreases by 6
L@x-2x+1) bK-2x-7 5. (a) decreases by 3 (b) increases by 2

D+ +4) D2x+ DHx -1
@ Gx +3)x+2) (H@y — D2y — 3)
(g) 1t — D + 3) (h) 2Bx + D(x + 2)

6. s = 35¢, slope represents speed

2. (a) 2x + 5)(2x — 5) \
G —-—DE2+x+1) s
() (t + H(? — 4t + 16)

@y + 3 —3) 407

(€) 2c — 3d)(4c® + 6¢d + 9d2)

) (2 + 2 — 202 + 4) T
(@ (x + 2)(x — 2)(2 + 4) , .
() (* + D(r — D2+ D + 1) 0 I !
3. () (x + Hx — Hx — 1)
b) x — D&x + 3)x — 2)
©) (x — 2)(x + 3 + 4)
@ & — )0 + Dix + 4) 7. (@ ()5 (i) 4.5 (i) 4.1 (iv) 4.01
© (x + 2Cx — D2x + 3) (v) 4.001 (v 3 (vi)3.5 (viii) 3.9
(F) (x + 3 = 3)x = 26 — 1) Gx) 43;99 ) 31'9_990 b3 4
4. @ X2 = D+ 1) B)x ' + x + 3) ((8 e
©x 2 + 4)x — 2) v
(d) 2x2(x — D2 + x + 1) 1
@ x2x + 12 )2+ 1) 22 + 4)
EXERCISE 2 m =3 |
1 X2+ 4x + 16
l(a)m (b) — \+\/_ (c) 5+ 8 [ —m = 4.5
(d) 2 / /
V2+h—-\V2—h
3x+ 4
RV ey
- 2x 8. (@ ()1 (i) 1.5 (i) 1.9 (iv) .99 (v)3
BT+ A8 - (vi) 2.5 (vii) 2.1 (viii) 2.01 (b) 2
©2x —y—4=0
2 @ m AT - Ve @4 |

() x(V \2 +1—-x
(d) ?\'2(\/.\ +1+Vx—1

L@4 )3 (©3 (-3 () —4 () -1
2160 + 7y =5=0 3.f)=2+6

541
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9. (a) (i) 1.75 (i) 1.1875
(iv) 0.757 525 (v) 0.750 75 (vi) 0.25
(vii) 0.4375 (viii) 0.6775 (ix) 0.742 525

(x)0.74925 (b)3 (¢)3x —dy —2 =0

(iii) 0.827 5 12

(@ C = %a’ + 300 (b) $800

(c) cost per kilometre for gas, oil, tires, ...

(d) $300 This is reasonable (insurance, license,
depreciation, ...).

(e) Total cost is fixed expenses plus per
kilometre expenses.

(d) A
y
EXERCISE 1.2
1. @1 ()0 (c) 1 (d) does not exist
(,_1) 2. (@8 B)m (©)3 (M2 @2 (e)k®
& ) m
. 3.(a) =4 ()10 ()0 (d) 729 (e) —1 (f)%
0 X
/ @4 m12v2 )3 ()2l
4.@ -1 ®-1 ©2 D) ©@F O
6 (h) —1
10. (a) (i) —1 (i) —2 (i) —2.2222 (iv) —2.5 ® M~
(v) —2.8571 (vi) —3.3333 (vii) —3.6364 5. (a)48 (b) =4 (c) —1 (d)32 (e)é
(viii) —3.9216 (ix) —4.4444 (x) —4.0816 i
b) -4 (@4x+y—4=0 ) —3
6. (a) does not exist (b) 0 (c)4 (d) does not
(@) d exist (e) does not exist (f) does not exist
¥ (® -4 () —& @O —-1 () —2
7. (a) 2.000 000, 2.593 742, 2.704 814,
2.716 924, 2.718 146, 2.718 268, 2.718 280,
2.718 282 (b) 2.718 28
8. (a) 1.0000, 0.7177, 0.6956, 0.6934, 0.6932
(b) 0.693
9. (a) 12 (b)% 11. within 0.000 25
1 1
13. f) = - g) = —=
X X
11. (a) T = 20 — 10/ (h in kilometres)
(b) The slope represents the rate of increase of
temperature as the altitude increases. seosrues oo
{XERCISE 1.3
" 1. @0 ()2 (¢) 1 (d) does not exist (e) 3
ol 03 @3 W4
B 2. @2 (2 ()1 (d) does notexist (e)0
Mo (0 M1
3. (a) continuous (b) discontinuous
o4 ks (c) discontinuous (d) continuous
(e) discontinuous
4. @0 (b)0 ()0 @O ©0 0 (0
(h)y 1 (1) —1 (j) does not exist
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5. (a) —1 (b) 1 (c) does not exist 9. (@) )0 (i) —1
vy 1 (i)l

A
y ()
l_,
l¢

o ) ! \7

6. 1 1 (o)l

(iii) does not exist (iv) |

(c) —1
A 10. )4 1T (© —1 (@1,3
y 11. Discontinuities at x = 30, 50, 100.
IT CA
0 i
A — e ®
[ S—
Ow®
0.50+
b
7. (@1 (b) —1 (c) does not exist N ; : >
30 50 100 200 ¥
¥
12. Discontinuities at x = 0.2, 0.3, 0.4, 0.5, ... .
I
CA
$ . o [ ]
0 1 X S——enD
[
[ e 0
[o—_
\ |
8 (@ @) —1 (i) -1 (i)l (iv) 1 T — e
(b) YA
13. Continuous everwhere.
l-_

(¢) nowhere 14. 5
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1. (@) =2 b)2x +y —-4=0

(c) YA
l__

(2,0

2.3 3x—y—-2=0

(©) YA

(1, 1

6. (a) 1)) —2 (i) 0 (iii) 4

(b)

.

0, —1)

\4, -5)

7. () (@4 b)ydx —y +8=0

()

(—2.0)

YA
4

(i@ -2 G)2x+y—-1=0

() 4
N |
0
() y)
©, D
0 \ =
(ivy@ -} ®x+4y-5=0
(c)
y
—
0
(v) (a)% b)yx — 6y + 12 =10
(c) A




(vi) (@) =8 ()8x +y + 6 = 0

(©) ¥)
(-1,2)

8. @Q7x+y—-1=0 byx+y=0
©3x+y—11=0 (dx+2y —3=0

9. @2+ 1 (b)—-1,0,1,2,3

10. @) 6a +2 (b) (§8) 11.(=1,1)

. (@) —¢

Jo

‘'ERCISE 1.5
S Vi AL oe

. (@) (1) 5.5 m/s

(i) 7.95 m/s  (iii) 9.91 m/s

(iv) 10.155 m/s  (v) 10.351 m/s (b) 10.4 m/s

. (@ ()4 m/s (i) 3 m/s (iii) 2.5 m/s
(iv) 2.1 m/s (b) 2 m/s
(©), (d)
SA
0 ] 2 3 4 T

. 4a + 4,8 m/s, 12 m/s, 16 m/s
. (a) (i) —0.6%min

(i) —0.8°min
(ili) —2.75%min (iv) —1.8°/min
(b) — 1°min

. (a) (i) 14.3 thousand/year

(ii) 13.7 thousand/year
(iv) 12.0 thousand/year

(b) 32

(iii) 13.0 thousand/year
(b) 11 thousand/year

. (a) (i) 47.51 m/s

.V(a) 0 (b)4

.(@)0,4 23 4 5

. (@0
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. (a) (1) 61 mm*mm (i) 49.21 mm*mm

(iii) 48.1201 mm*mm (b) 48 mm¥/mm

4 % L/min

(ii) 47.93 m/s
(iii) 48.26 m/s (iv) 48.30 m/s
(b) 48.34 m/s (c) 50 — 1.66t
(d) After about 60.24 s (e) —50 m/s

(v) 48.33 m/s

XCISE 1.6

(c) does not exist

(f) 6 (g) does not exist
»sren L 5 To’ Tg7 i_g’ %

(c) 2, 8, 24, 64, 160, 384

DL =33 53¢ @LL3LLE

®1,2,1, -1, =2, —1

®0 ©6 @i (2

M1 HO GO Ko

(1) does not exist (m) 0 (n) does not exist

0 -2 P00 (@0 —% (s) 0 (t) does

not exist 4. 1

(d3 ()0

(f) does not
exist (g) %

32 16 128 512 1024
- 2 1’9‘ L5 9 &% 4 i 100> 2021.4,
4.5 X 10", 128 X 10%; does not exist

1, 1.414 214, 1.442 250, 1.414 214, 1.379 730,
1.348 006, 1.320 469, 1.296 840, 1.276 518,
1.258 925, 1.081 383, 1.047 129, 1.012 507,
1.006 932, 1.000 921; 1

L2 S LAl pL
(ERCISE 1.7
. (a) % (b) % (c) divergent (d) 175

(e) divergent (f) 180 (g)% (h) divergent

. (@8 (b) —
L@ OF ©8

OF - OF-WOE ™

107 171 37481
@) 375 () L
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4

5.

6

o

1

[\ )

w

6

e REVIEW E

6 ANSWERS

|
@] <1, ——

3
b)|x| <3, ——
| —x () v} '3 —x

1

— X

X
x|>1,—— @W3<x<5,
() | x| PR (d)3 <x 55

2x
I — 2x
1, 0.984 375, 0.985 747, 0.985 503, 0.985 567,
0.985 545, 0.985 554, 0.985 550; yes; 0.985 55

. (a) 0.5, 0.6667, 0.75, 0.8, 0.8333, 0.8571,
0.875, 0.8889, 0.9, 0.9091, 0.9167, 0.9231,
|
n+1

(e) | x| <4,

0.9286, 0.9333, 0.9375; (b) 1 —

sin 6

(c) I (d) 1000 7

1 —sin 6

"YFRCISEK
sl V] . 3 W]

.(@A1 B0 (¢) —1 (d)does notexist (e) 3
02 @2 (M2

. (a) discontinuous
(c) discontinuous

. (@22 (b) =1 (c) —4 (d)6 (e) VIO
2
H% ® —\f (h) —6

(b) continuous

. (a) does not exist (b) —2 (c) —1
@0 (Hh1 (g —1
. (@) (1) 0 (i) 1 (iii) does not exist

(b) A
¥

(do

(h) does not exist

. (@) (i) 0 (i) 0 (iii) O
(vi) does not exist

(iv)y I (v)2

(b) A

(c) discontinuous at 1

7.

8.

t=1,2,3,4,5, ..
CA

34+

o+
“w
i

@) ()4 (i) 1.75 (i) 0.31
®0 (©y= -2

() yA

o —

, o (1, -2

(iv) 0.0301

9. dx +y+3 =0

10. (a) (i) —14.7 m/s (ii)) —10.3 m/s
(b) —9.8 m/s

11. 807 cm¥cm  12. (a) 2 (b) —% (c) does not
exist (d) O

13. (a) % (b) divergent

14.% 15. —2<,\‘<O,—l—1 16. 3

X
9 CHAPTER 1 TEST

1. (a) 3 (b) *é (c) —% 2.(a) =3 (b) =2
C2x+y—-3=0
(d

1A
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3. (a) (i) 1 (ii)) —1 (iii) does not exist (c) discontinuous at 0

(b) A 4. (a) 19 m/s (b) 14m/s 5.3 6. 4—78
y
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